Log in

No account? Create an account

Previous Entry | Next Entry

Almost everyone recognizes that if humans are truly to go deeper into the Solar System, we need faster and more efficient propulsion systems than conventional chemical rockets. Rocket engines powered by chemical propellants are great for breaking the chains of Earth's gravity, but they consume way too much fuel when used in space and don't offer optimal control of a spacecraft's thrust.

NASA recognizes this, too. So in 2015, the space agency awarded three different contracts for development of advanced propulsion systems. Of these, perhaps the most intriguing is a plasma-based rocket—which runs on Argon fuel, generates a plasma, excites it, and then pushes it out a nozzle at high speed. This solution has the potential to shorten the travel time between Earth and Mars to weeks, rather than months.

But to realize that potential, Houston-based Ad Astra Rocket Company must first demonstrate that its plasma rocket, VASIMR, can fire continuously for a long period of time. The three-year, $9 million contract from NASA required the company to fire its plasma rocket for 100 hours at a power level of 100 kilowatts by 2018.

This week, Ad Astra reported that it remains on target toward that goal. The company completed a successful performance review with NASA after its second year of the contract, and it has now fired the engine for a total of 10 hours while making significant modifications to its large vacuum chamber to handle the thermal load produced by the rocket engine...

NASA’s plasma rocket making progress toward a 100-hour firing | Ars Technica

Latest Month

May 2018
Powered by LiveJournal.com
Designed by Naoto Kishi